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Equivalent Capacitances for Microstrip Gaps and Steps

PETER BENEDEK AND P. SILVESTER

. . ..-. -.. . ..
Atxwract—”lne excess cnarge density distribution near gaps and

steps in microstrip transmission lifes is calculated by the solution of

singular integral equations. Data are presented for gaps in rnicro-

strips of width-to-substrate-thickness ratios of 0.5, 1.0, and 2.0

and relative dielectric constants rsnging from 1.0 to 15.0. For steps

in a microstrip line results are given for width-to-thickness ratio of

unity, relative dielectric constants of 1.0 and 9.6, while the change

of width-to-height ratio is from 0.1 to 10.0. The excess charges are

calculated explicitly in relatively short computing times, and the

results are believed to be accurate to within a few percent.

INTRODUCTION

I

N RECENT YEARS there has been a growing in-

terest in modeling microstrip discontinuities. Vari-

ous authors [1 ]– [5 ] have obtained results for micro-

strip open circuits. It appears, however, that few such

attempts have been made for the gaps and steps in

microstrip, illustrated in Fig. 1. Stinehelfer [1] per-

formed transmission-loss measurements on gaps in

microstrip and modeled them by simple gap capaci-

tances as in Fig. 2.

The model proposed here for the gap is a m network,

as shown in Fig. 3, while for the step it is a shunt ca-

pacitance, as shown in Fig. 4. The mathematical ap-

proach taken here is based on the integral equation

method used, in [5], to calculate the excess capacitance

of a microstrip open circuit.

FORMULATION OF THE GAP PROBLEM

The r model in Fig. 3(b) is a symmetric two-port net-

work, so that at least two measurements are required to

determine the parameters Cl and CM Fig. 5(a) and (b)

illustrates the two calculations to be performed. The

resulting capacitances are denoted by c.... and C.dd,

respective y.

Let @(P) be the potential corresponding

distribution u(P’), so that

@(P) = ~ u(I’’)G(F’; P’)dP’

to a charge

(1)

where G(P; P’) is some Green’s function appropriate to

the particular problem. P and P’ are space points for

potential and charge, respectively. Let @@(P) be the po-

tential (constant on the strip) due to an infinitely ex-

tending microstrip line, with corresponding charge den-
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Fig. 1. (a) Gap in a microstrip line. (b) Step in a microstrip line.
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Fig. 2. Stinehelfer’s [1] gap capacitance model.
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Fig. 3. Capacitive r-network model for a gap in a microstrip line.
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Fig. 4. Shunt capacitance model for a step in a microstrip line,

sity distribution a~(~’). Then

4.(H = sa~(P’)G~(P; P’)dP’ (;!)

where Gw (P; P’) is the Green’s function for the infini t.e

microstrip. Let @f(P) be the potential associated with a

charge distribution u@(.P’) for z > ~ and — u~(~’) fcr

z <~. The z-coordinate axis corresponds to the axis clf

the microstrip, as indicated in Fig. 1. Then

cM’) = ~ aco(P’)Gt(P; P’)dP’ (3)
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Fig. 5. (a) Symmetrically excited two-port network r~sulting in
em,. (b) Antkyrnrnetrlcally excltecl two-port network m Codd.c

where GE(P; P’) is the Green’s function for the charge

distr~bution with polarity reversal at z =$.

To obtain C.~~~, as defined by Fig. 5(a), an infinitely

extending microstrip line is considered, as given by (2).

Two other lines with charge density distribution +u~(P’),

each having a polarity reversal at z = s/2 and z = – s/2,

respectively, are governed, according to (3), by

1
j f&/2(@ = ; su~(P’)G8/2(P; P’)dP’ (4)

and

1
~ @-,/2(p) = :J u@(P’)G–,/j(P; P’)dP’. (5)

The superposition of these lines is accomplished by

adding (2) and (4), and subtracting (5), thereby result-

ing in

+ : [Gs/2(p; p’) – G-.,, (P; P’)]} dP’. (6)

The quantity on the left of (6) represents the potential

corresponding to a microstrip charge distribution for

I ZI >s/2 and .ero charge elsewhere. Note that on the

strips this potential is not dm but rather @@+~ {@,12(P)

+42(P) ] .
Now it may be observed that a certain amount of

extra charge cr.”’”” = u — Uw must be added to the two

strips in Fig. 1 (a) to raise the potential on them to @@.

The potential corresponding to the extra charge is a.even

is @co— {@co+; [4812(P) ‘@–s/2(P) ] } , SO that

~ [+-.,2(P) - &,@]= ~ u:ven(I’’)Geven(P; P’)dP’. (7)

Solving (7) for UC”V’”(P’) gives

2
s

u,e’en(P’)dP’

c even =

&

(8)

where due to symmetry the integration is performed

only over one of the strips.

To evaluate Cc,d& as defined by Fig. 5(b), it can be

shown by an analogous procedure that to raise (lower)

the potential on the semi-infinite strip at z> s/2

(z <s/2), to Om( –q$~) an extra charge U,odd( –U.odd) is

required. The corresponding integral equation is

@co – ; {%2(p) + @-#/2(p)}

. sa~Odd(P’)@’dd(P; P’)dP’ (9)

and Codd is evaluated by

sU.odd(p’)dp’

Codd =
%

(lo)

where the integration is done over the strip located at

z>s/2.

FORMULATION OF THE STEP PROBLEM

The capacitance associated with a sudden change of

width of the microstrip line, shown in Fig. 1 (b), may be

handled in the same way as the C..,. case was for the

gap. Equation (2) is applied to an infinitely extending

microstrip line of width-to-height ratio wl/h, with a

charge density distribution of ~a@ (lJ (P’), so that

1 sj@ca(l)(H=: ucocl)(P’)Gco(P; P’)dP’. (11)

The superscript refers to the width-to-height ratio

wl/h. Similarly, for a microstrip line of wz/lz with a

charge density distribution of *U=(z) (P’)

; 4m(2)(p) = 1

s
am (2J (P’) G~(P; P’)dP’,

2
(12)

By (3), for a charge density distribution &n@ (lJ (P’) hav-

ing a polarity reversal at z = O, the resulting potential is

: @o(I)(p) = !
s

u~ (1) (P’) GO(P; P’) dP’
2

(13)

. . . .
whale for a charge density dlstrlbutlon ~u~ (2)(P’) it is

By superposition, adding (1 1), (12), (13), and subtract-

ing (14), there results

: {4m’l)(@+ @o(’)(p)} + : {4%(’)(P) - 40@)(P))

. su@clj(P’) : { G~(P; P’) + GO(P; P’)} dP’

+ ~ u~(2)(P’) ~ { G~(P; P’) – Go(P; P’)} dP’. (15)



BENEDEK AND SILVESTER: EQUIVALENT CAPACITANCES 731

I
x where tile Green’s function, obtained by the method of

partial images, is found to be [6]

Fig.6. Cross section of amicrostrip line.

The two integrations on the right are carried out over

the semi-infinite strips wllh, on the interval ZG (O, CO),

and zw/h, on the interval z ~ ( — w, O), respectively.

Note that the effect is to generate the configuration of

Fig. 1(b). Although the charge distribution on the semi-

infinite strips is identical to that on microstrip lines of

corresponding width-to-height ratios, this is not true of

the potentials on the strips.

Let U,sbP(I”) be the excess charge density distribu-

tion required to produce Om ‘1)(~) and d~ ‘2)(~) on the

strips. Then the corresponding potentials producing the

excess charge are

*{4=(’)(P) – O@(’)(P) - 4,(’)(P) + 4,(’)(P)}

and

*{l#m(’)(P) - @@(’)(P) - 4,(1)(P)+ 4,(’)(P)]

on the two sides of the plane of discontinuity. There-

fore, using (1) for the excess charge, there results

where, referring to Fig. 1 (b),

1
@@(’)(P) – @m(Z)(P) – (j,(’)(P)

+ @o(’)(P), forz>O
@*t..(p) = !

1
2 @m(Z)(P) – @m(’)(P) – O,(1)(P)

I + 40(2)(P), forz <0. (17)

Equation (16) is solved for u~’ten, and then

J~e.tep (p’) dpf

cat,.= (18)
4.

where the integration is performed over both strips.

1
G@(y; Y’;’ = 27(C0 + Cl)

with K = (Co—Cl)/(CO+eI). The potential d~(y) is ccm-

stant on the strip.

The unknown charge distribution a~(y’) is even irl y’

and is expanded in an even set of functions ~+.} de-

fined by

j.(Y’)
4??(Y’) = —

J1 – Yfz
(21)

where

-f.(Y’) = p{(a-y”) “>1
(1, ‘?2= 1. (:22)

Then the charge density distribution on the strip may

be written as

U@(Y’) = X ai+i(y’). (23)

Note that the function space {~~(y’) } contains the ex-

pected edge singularity (1 –y’2)-’/2 [7].

When (23) is substituted in (19), it may be solved by

projecting both sides on a set of even-order Legends-e

polynomials. The singularities in the integrand at y == y’

and I y’1 = 1 require special treatment as given in [6].

The Green’s function Gi(P; P’) in (3), obtained by

using a line charge with polarity reversal together w ith

partial image theory [5], is

G(Z Y, z; Y’)

1–K

{
= ~ -f(O) – (1 – K) jj K’-~(n)} (;~4)

*=1

~vhere

{

v“(z-f)2+4n%’+(y –y’)2+(z–t)
f(z) = log

}<(z–~)’+4?t’W+(y -y’)’- (z–.$) ‘
(25)

COMPUTATIONAL lVIETHOD The charge distribution u~(y’), obtained from (19), is

The details of the method used to obtain u~(P’), the used in ((3) with the Green’s function given in (24), to

charge distribution of an infinitely extending microstrip calculate #S_.fZ(l’), @.N(P), @O(l) (l’), and 40(2)(~) =mcf,

transmission line, are as shown in [6]. Briefly, referring hence, the exciting potential on the left sides of (7), (9),

to Fig. 6 and using (2), the charge distribution is gov- and (17).

erned by [6] The Green’s functions @en(P; P’), GOd~(P; P’), and

G“”P(P; F“) are obtained, using partial image theory, as

@@(Y) = f 1um(Y’)&(Y; Y’)dY’
~19) described by the authors in [8]. Taking full advantage

–1 of the inherent symmetries in Fig. 1(a) and (b) the
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Green’s functions are found to be

1
GOZ,y, Z; y’, Z’) =

27r(@ + 61))2.

. {j(O) – (1 – K) ~ K“-~(n)} (26)
n=1

where

and

The excess charge density distribution, ue(y’,z’), in

either of (7), (9), or (17), is calculated by expanding it

in the biquadratic set ~ 1, y’, z’, Y’2, Z’2 ], and projecting

on the set ~ 1, y, z, y2, z z}. The unknown coefficients are

obtained by solving the resulting matrix equation [8].

Although it appears that the integrations in the z direc-

tion extend to z = ~, in practice the exciting potentials

in (7), (9), and (17) fall off to zero rapidly with increas-

ing I z \ , so that integrations over finite intervals suffice.

RESULTS AND CONCLUSIONS

..., and Cr,dd normalized to strip width are plottedc

in Fig. 7 against siw for substrate relative dielectric

constants ranging from 1.0 to 15, and width-to-height

ratios of 0.5, 1.0, and 2.0. Cl and C12 to be used in the ~

model for the gap may be easily calculated using

Cl = +C.ve. (29)

c,, = + [Codd – cl]. (30)

Equations (29) and (30) follow readily from Fig. 5(a)

and (b). As expected, for large values of s/v, codd = Cl

which in turn approaches the open-circuit capacitance

values [6]. Also, as s/w~O, C,v,~ approaches zero.

Transmission-loss calculations indicate that Stine-

heifer’s [1] gap capacitances for G= 8.875 are of the

order of 5 percent lower than those presented here for

E,=9.6.

In Fig. 8 the calculated values of C,t,P are presented

for e,= 1.0 and 9.6, wl/h= 1.0 with 0.15wz/fi< 10.0. In

this case, no published data appear to be available for

comparison. It appears that for practical microstrip

1’
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Fig. 7. (a) C,ven and C.dd per unit width of microstrip lines of width-
to-height ratio of 0.5 and relative dielectric constants from 1.0 to
15.0. Gap spaci~g-to-wld~h ratio ~anges from 0.1 to 2.0. (b) Same
as (a) except wldth-to-helght ratio of 1.0. (c) Same as (a) except
width-t~heixht ratio of 2.0
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Fig. 8. C,t.D per unit geometric mean width of microstrip lines of
width-to-height ratio of unity and relative dielectric constants of
l.Oand 9.6. The change of width-to-height ratio ranges from O.l
to 10.0.

steps, utilized as quarter-wave transformers, the shunt

capacitive contribution is quite small; so that no at-

tempt has been made to produce extensive data.

As the excess charge near gaps and steps in microstrip

is calculated explicitly-, the problem encountered in the

733

subtraction of nearly equal numbers [4] has beeu eliu~-

inated as it had been in the case of open circuits [5].

The results are believed to be accurate to w-ithin a felr

percent. The calculations were performed on an I B 3 t

360/75 computer. For G.= 9.6 typical calculation times

are about 33 s for G,. and Co&j and 1 min for (~.fi,.p

For c,:= 1.0 the CPU time required is considei-abl:

shorter.
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