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Equivalent Capacitances for Microstrip Gaps and Steps

PETER BENEDEK anxp P. SILVESTER

Abstract—The excess charge density distribution near gaps and
steps in microstrip transmission lines is calculated by the solution of
singular integral equations. Data are presented for gaps in micro-
strips of width-to-substrate-thickness ratios of 0.5, 1.0, and 2.0
and relative dielectric constants ranging from 1.0 to 15.0. For steps
in a microstrip line results are given for width-to-thickness ratio of
unity, relative dielectric constants of 1.0 and 9.6, while the change
of width-to-height ratio is from 0.1 to 10.0. The excess charges are
calculated explicitly in relatively short computing times, and the
results are believed to be accurate to within a few percent.

INTRODUCTION

N RECENT YEARS there has been a growing in-
J:[ terest in modeling microstrip discontinuities. Vari-

ous authors [1]-[5] have obtained results for micro-
strip open circuits. It appears, however, that few such
attempts have been made for the gaps and steps in
microstrip, illustrated in Fig. 1. Stinehelfer [1] per-
formed transmission-loss measurements on gaps in
microstrip and modeled them by simple gap capaci-
tances as in Fig. 2.

The model proposed here for the gap is a 7 network,
as shown in Fig. 3, while for the step it is a shunt ca-
pacitance, as shown in Fig. 4. The mathematical ap-
proach taken here is based on the integral equation
method used, in [5], to calculate the excess capacitance
of a microstrip open circuit.

FORMULATION OF THE GAP PROBLEM

The 7 model in Fig. 3(b) is a symmetric two-port net-
work, so that at least two measurements are required to
determine the parameters C; and Cy. Fig. 5(a) and (b)
illustrates the two calculations to be performed. The
resulting capacitances are denoted by Ceven and Coaq,
respectively.

Let ¢(P) be the potential corresponding to a charge
distribution ¢(P’), so that

8(p) = [ o(Pr6(P; PYaP (1)

where G(P; P’) is some Green’s function appropriate to
the particular problem. P and P’ are space points for
potential and charge, respectively. Let ¢,(P) be the po-
tential (constant on the strip) due to an infinitely ex-
tending microstrip line, with corresponding charge den-
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Fig. 1. (a) Gap in a microstrip line. (b) Step in a microstrip line.

Fig. 2. Stinehelfer’s [1] gap capacitance model.

A W E

E1 E2 E1 £
(a) (b)

Fig. 3. Capacitive n-network model for a gap in a microstrip line.
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Shunt capacitance model for a step in a microstrip line,
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Fig. 4.
sity distribution ¢,(P’). Then

8.(P) = [ 0.P)Gu(P; PP @)
where G, (P; P’) is the Green’s function for the infinite
microstrip. Let ¢:(P) be the potential associated with a
charge distribution 6,(P’) for z>§ and —o,(P’) for
z<§. The z-coordinate axis corresponds to the axis of
the microstrip, as indicated in Fig. 1. Then

#(P) = [ ou(P)Gi(P; PYaP 3)
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Fig. 5. (a) Symmetrically excited two-port network resulting in

Coven. (b) Antisymmetrically excited two-port network in Coaa.

where G:(P; P’) is the Green’s function for the charge
distribution with polarity reversal at z=§£.

To obtain Ceven, as defined by Fig. 5(a), an infinitely
extending microstrip line is considered, as given by (2).
Two other lines with charge density distribution $6,(P’),
each having a polarity reversal at 2=5/2 and 2= —5/2,
respectively, are governed, according to (3), by

~ B = [ auPYGs s PP @
and

1 1

~6s(P) = [ ouP)GunBs PP (9)

The superposition of these lines is accomplished by
adding (2) and (4), and subtracting (5), thereby result-
ing in

i
8o(P) +5 (8us(P) = 6(P)} = [ out®) feutp; P
1
+ 5 [GualP; P) = Goun; PP, (6)

The quantity on the left of (6) represents the potential
corresponding to a microstrip charge distribution for
|z| >s5/2 and zero charge elsewhere. Note that on the
strips this potential is not ¢, but rather ¢,+3% {d),,/z(P)
_¢~—sl2(P) } .

Now it may be observed that a certain amount of
extra charge ¢,"**=¢—0¢, must be added to the two
strips in Fig. 1(a) to raise the potential on them to ¢..
The potential corresponding to the extra charge is ¢,°v*"

iS Gu— { Pt 3[Be2(P) —d_n(P)]}, s0 that
%[qﬁ—s/z(P) — ¢u2(P)] = f a7 (P)Gever(P; P)AP. ()
Solving (7) for o272(P’) gives

2 f oo (PP

Ceven = (8)
P
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where due to symmetry the integration is performed
only over one of the strips.

To evaluate Coaa, as defined by Fig. 5(b), it can be
shown by an analogous procedure that to raise (lower)
the potential on the semi-infinite strip at z>s/2
(2<5/2), to ¢(—ds) an extra charge ¢,°¢(—g,9) is
required. The corresponding integral equation is

1
Do — 2 {$e/2(P) + ¢_usa(P)}

= f o 34(P)Gedd(P; PYdP" (9)
and Coqq is evaluated by
f o284 (P)dP’
P

where the integration is done over the strip located at
z>s/2.

Coda = ( 1 0)

FORMULATION OF THE STEP PROBLEM
The capacitance associated with a sudden change of

width of the microstrip line, shown in Fig. 1(b}), may be
handled in the same way as the Ceven Case was for the
gap. Equation (2) is applied to an infinitely extending
microstrip line of width-to-height ratio w,/k, with a
charge density distribution of }¢,,V(P’), so that

1 1

~8.9() = = [ PG PYIP. (11
The superscript refers to the width-to-height ratio
wy/h. Similarly, for a microstrip line of wy/k with a
charge density distribution of {o,®(P’)

1 1

~6.0() =~ [ e iGur; PP, (12
By (3), for a charge density distribution 3¢, (P’) hav-
ing a polarity reversal at z=0, the resulting potential is

1 1
7 &P (P) = Ef"w(”(P’)Go(P; P)ap’ (13)

while for a charge density distribution %¢, @ (P’) it is
1 1
S () =~ f 0@ (P)Go(P; PYAP'.  (14)

By superposition, adding (11), (12), (13), and subtract-
ing (14), there results

1 1
3 {6V (P) + ¢o(P)} + p {$.D(P) — ¢ (P)}
= f«rm("(?') % {G«,(P; P’y 4 Go(P; P’)}dP’

+ f aw<2>(P')% {G.(P; P") — Go(P; P)}dP’. (15)
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Fig. 6. Cross section of a microstrip line.

The two integrations on the right are carried out over
the semi-infinite strips wi/%, on the interval 2& (0, «),
and w./k, on the interval s&(— o, 0), respectively.
Note that the effect is to generate the configuration of
Fig. 1(b). Although the charge distribution on the semi-
infinite strips is identical to that on microstrip lines of
corresponding width-to-height ratios, this is not true of
the potentials on the strips.

Let o.%°(P’) be the excess charge density distribu-
tion required to produce ¢, (P) and ¢..®(P) on the
strips. Then the corresponding potentials producing the
excess charge are

3 O(P) — @ (P) — $o™(P) + ¢o®(P)}
and
Hpo@(P) — ¢u®(P) — ¢o2(P) + ¢o@(P)}

on the two sides of the plane of discontinuity. There-
fore, using (1) for the excess charge, there results

¢ster(P) = fae"*'ep(P')Gmp(P; PYdP (16)
where, referring to Fig. 1(b),
8.0(P) — 92(P) — $oO(P)
(
g0 (P) = = T $®(P),  forz>0
2 ]%@NP) — 6.9(P) — $o0(P)
4+ @ (P), forzg < 0. (17)
Equation (16) is solved for ¢.*°?, and then
f aeten(P')d P!
Cstep = —’*'g_“ (18)

where the integration is performed over both strips.

CoMPUTATIONAL METHOD

The details of the method used to obtain ¢,(P’), the
charge distribution of an infinitely extending microstrip
transmission line, are as shown in [6]. Briefly, referring
to Fig. 6 and using (2), the charge distribution is gov-
erned by [6]

8 = [ oGt 19)

-1
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where the Green's function, obtained by the method of
partial images, is found to be [6]

1
27(eo + €1)

— af\?

- 4n2+<yhy)
- Y, Kn1log =
4(n+1)2+<y hy)

n=1
with K = (e;—e€1)/(e0+e€). The potential ¢.(y) is con-
stant on the strip.
The unknown charge distribution ¢..(v’) is even in y’
and is expanded in an even set of functions {¢.} de-
fined by

Go(y;9") =

(20)

fa(y') '
Ua(y) = ——— 21
=i (21)
where
n—1 1/ 9
Jaly) = E{(n_l)—y}, n>1
L n=1(22)

Then the charge density distribution on the strip may
be written as

eu(y) = 2 aahi(y). (23)

Note that the function space {¢n(y’)} contains the ex-
pected edge singularity (1—y'2)=12 [7].

When (23) is substituted in (19), it may be solved by
projecting both sides on a set of even-order Legendre
polynomials. The singularities in the integrand at y =y’
and || =1 require special treatment as given in [6].

The Green's function G:(P; P’) in (3), obtained by
using a line charge with polarity reversal together with
partial image theory [5], is

Gi(h, y,2; )

1 — K i
_ {f<o> —U-BY K"‘1f<n)} (24)

47eg n=1

where

VE—H 4+ (y— ')+ (-8
f(n) = log { } . (25)
V(5= £+ 4n?h+ (y—y') = (z—§)

The charge distribution o,(¥’), obtained from (19), is
used in 3) with the Green’s function given in (24), to
calculate ¢-8/2(P), (i)s/g(P), d)o(l)(P), and ¢0(2)(P) and,
hence, the exciting potential on the left sides of (7), (9),
and (17).

The Green’s functions Gever(P; P’), God4(P; P’), and
Gste»(P; P’) are obtained, using partial image theory, as
described by the authors in [8]. Taking full advantage
of the inherent symmetries in Fig. 1(a) and (b) the
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Green’s functions are found to be
1

Gh’ s 85 ,’Z, = T N,
(4, 3,25/, 2) 2m(ep + e1)k

.{f(O) ~ (1K) % K,,_lf(n)} 26
where
o <[+ (57 ()T
+ :(2n)2 + <2_E2_ >” N (Z;z'y: Cige
oo (2T
§ L(W * (y:y’ ) + (z:Z)g e
and
oo ()5
e+ (55 ()] e

The excess charge density distribution, o.(y',2'), in
either of (7), (9), or (17), is calculated by expanding it
in the biquadratic set {1, v, 2, v 2’2}, and projecting
on the set { 1,9, 2, ¥, 22}. The unknown coefficients are
obtained by solving the resulting matrix equation [8].
Although it appears that the integrations in the z direc-
tion extend to 2= 0, in practice the exciting potentials
in (7), (9), and (17) fall off to zero rapidly with increas-
ing | z| , so that integrations over finite intervals suffice.

ResuLts AND CONCLUSIONS

Coven and Coaq normalized to strip width are plotted
in Fig. 7 against s/w for substrate relative dielectric
constants ranging from 1.0 to 15, and width-to-height
ratios of 0.5, 1.0, and 2.0. C; and Cys to be used in the 7
model for the gap may be easily calculated using

(29)
(30)

Cl = %Ceven
Clz = %[Codd - C1]-

Equations (29) and (30) follow readily from Fig. 5(a)
and (b). As expected, for large values of s/w, Coaa=Ci
which in turn approaches the open-circuit capacitance
values [6]. Also, as s/w—0, Ceven approaches zero.
Transmission-loss calculations indicate that Stine-
helfer’s [1] gap capacitances for ¢,=8.875 are of the
order of 5 percent lower than those presented here for
€ =9.6.

In Fig. 8 the calculated values of Cgep are presented
for ¢, =1.0 and 9.6, wi/h=1.0 with 0.1 <w,/2<10.0. In
this case, no published data appear to be available for
comparison. It appears that for practical microstrip
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Fig. 7. (a) Ceven and Coda per unit width of microstrip lines of width-
to-height ratio of 0.5 and relative dielectric constants from 1.0 to
15.0. Gap spacing-to-width ratio ranges from 0.1 to 2.0. (b) Same
as (a) except width-to-height ratio of 1.0, (¢) Same as (a) except
width-to-height ratio of 2.0
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Fig. 8. Citep per unit geometric mean width of microstrip lines of
width-to-height ratio of unity and relative dielectric constants of
1.0 and 9.6. The change of width-to-height ratio ranges from 0.1
to 10.0.

steps, utilized as quarter-wave transformers, the shunt
capacitive contribution is quite small; so that no at-
tempt has been made to produce extensive data.

As the excess charge near gaps and steps in microstrip
is calculated explicitly, the problem encountered in the
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subtraction of nearly equal numbers [4] has been elim-
inated as it had been in the case of open circuits [3].
The results are believed to be accurate to within a few
percent. The calculations were performed on an IBM
360/75 computer. For €.=9.6 typical calculation tinics
are about 33 s for Ceven and Coaqa and 1 min for Coep
For €,=1.0 the CPU time required is considerabiy
shorter.
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